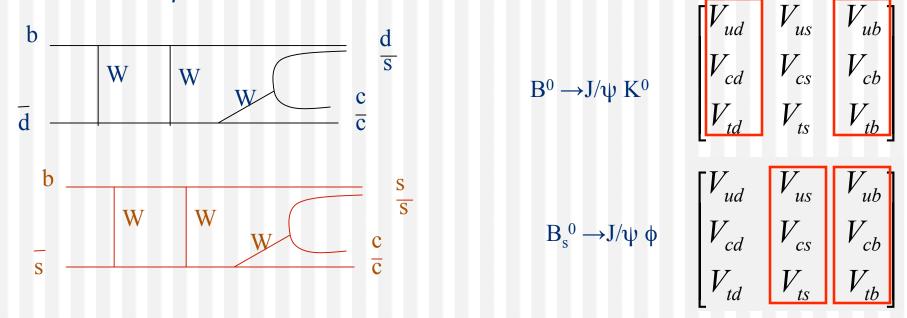
CP Parameters of the B_s at the Tevatron

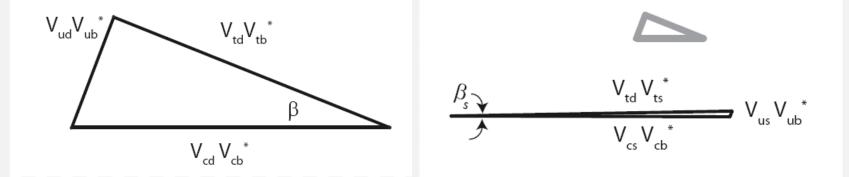
Joe Boudreau
For the CDF and D0 collaborations
Montpellier QCD Workshop
June 28 2010

CP Violation

• Study of CP symmetry and its violation is a strong hint to the underlying of dynamics of particle interactions.



- A great example: Cronin & Fitch's discovery of CP violation in 1964 indicates (Kobayashi, Maskawa 1973) three generations of quarks.
- BSM CP violation in the B⁰_s sector could indicate a fourth generation (see arXiv:0803.1234v3)
- Fascinating connection to cosmology, since the standard model has all of the ingredients to generate an $O(10^{-20})$ Baryon Asymmetry of the Universe $n_b/n_{\gamma} \sim 10^{-20}$, namely the three Sakharov conditions of baryon number violation, CP violation, and departure from thermal equilibrium. However n_b/n_{γ} measured to be $O(10^{-10})$.


CP violation in the B_s system

- The Tevatron produces all species of b-hadrons: B^0 , B^+ but also B_s^0 , B_c^+ , Λ_b (Σ_b , Ξ_b , Ω_b ...) excited states
- In the B⁰_s sector, two measurements stand out, because one can compare clean measurements to precise theory predictions:
- The measurement of the CP phase β_s in the decay of $B_s^0 \rightarrow J/\psi \phi$
 - New measurement from CDF based on 5.2 fb⁻¹; older (2.8 fb⁻¹) measurements from D0
- The measurement of the semileptonic CP asymmetry A^b_{sl}
 - New measurement of the dilepton charge asymmetry from D0 (6.1 fb⁻¹); older (1.6 fb⁻¹) measurement from CDF.
- These both involve mostly the physics of the weak interaction.

The decay $B^0_s \rightarrow J/\psi \phi$ measures a CP phase similar to the angle β measured in $B^0 \rightarrow J/\psi \ K^0$ decay: we replacement a d antiquark by an s antiquark

We are measuring not the (bd) unitarity triangle but the (bs) unitarity triangle:

$$B_{s}^{0} \rightarrow J/\psi \phi$$

• $B_s^0 \rightarrow J/\psi \phi$ is two particles decaying to three final states...

Two particles:

$$\begin{vmatrix} B^{0}_{S,L} \rangle = p | B_{S}^{0} \rangle + q | \overline{B}_{S}^{0} \rangle$$
$$| B^{0}_{S,H} \rangle = p | B_{S}^{0} \rangle - q | \overline{B}_{S}^{0} \rangle$$

Light, CP-even, shortlived in SM

Heavy, CP-odd, longlived in SM

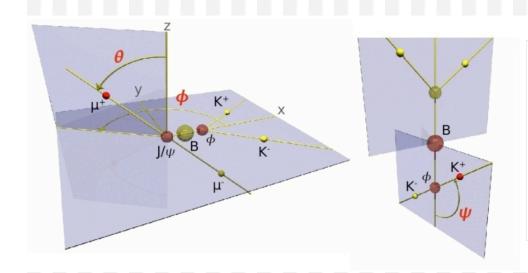
Three final states:

$$J/\psi \phi$$
 in an S wave $J/\psi \phi$ in a D wave $J/\psi \phi$ in a P wave

CP Even

CP Odd

A supposedly CP even initial state decays to a supposedly CP odd final state.... like the neutral kaons



The polarization of the two vector mesons in the decay evolves with a frequency of Δm_s

Measurement needs $\Delta\Gamma \neq 0$ but not flavor tagging.

Measurement needs flavor tagging, resolution, and knowledge of Δm_s

The measurement is a flavor-tagged analysis of time-dependent angular distributions:

$$\hat{n} = (\sin\theta\cos\varphi, \sin\theta\sin\phi, \cos\theta)$$

$$\vec{A}(t,\psi) = (A_0(t)\cos\psi, \frac{-A_{\parallel}(t)\sin\psi}{\sqrt{2}}, i\frac{A_{\perp}(t)}{\sqrt{2}})$$

$$P(\theta, \phi, \psi, t) = \frac{9}{16\pi} |\vec{A}(t,\psi) \times \hat{n}|^2$$

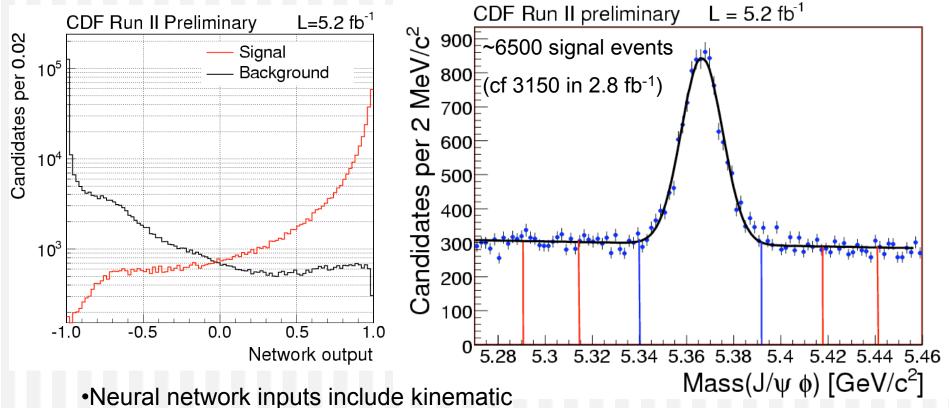
An analysis of an oscillating polarization.

We measure:

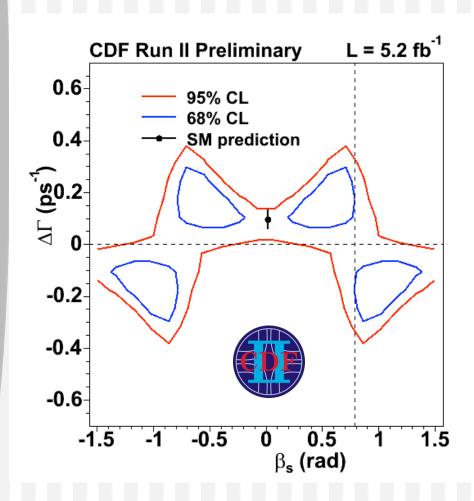
The CP phase β_s

Width difference $\Delta\Gamma_s$ in B⁰_s system (as predicted by HQET)

Lifetime of B_s $(\tau_s/\tau_0 = 1.00 \pm 0.01 \text{ in HQET})$


Polarization amplitudes and phases A_0 , A_{\perp} , $A_{||}$, δ_{\perp} , $\delta_{||}$

New: in this measurement we incorporate potential contamination from $B^0_s\to J/\psi~K^+K^-$ (K+K- in an S-wave) the impact on our results was pointed out by Stone and Zhang Phys. Rev. D 79, 074024 (2009)

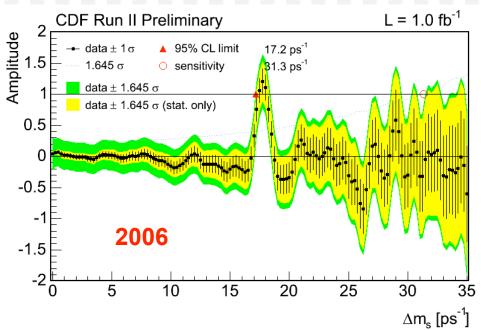

Data sample.

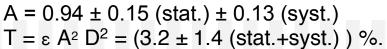
Event selection by neural network; the cut is optimized by choosing the best statistical error on β_s .

- Neural network inputs include kinematic variables as well as particle ID (TOF and dEdx).
- *Optimized to minimize the error on β_s .

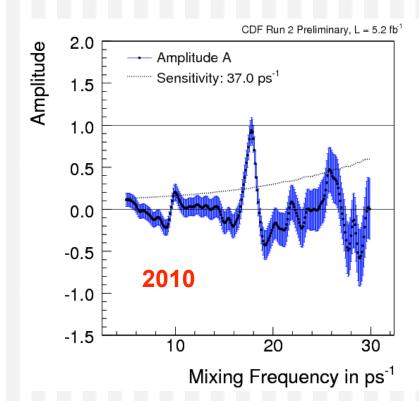
Constraints on β_s and $\Delta\Gamma_s$ without flavor tagging

Next, we add flavor tagging, the determination of whether the strange bottom meson was born as a B₀ or a B_s.

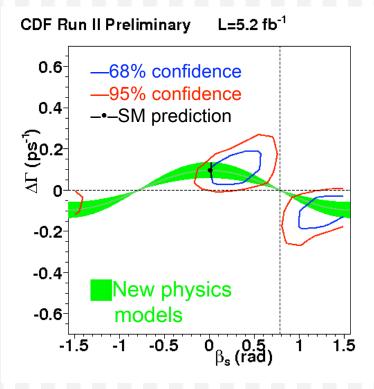

Two varieties of flavor tagging Are applied:


OST: "Opposite side tagging" $\varepsilon D^2 \sim 1.8\%$ calibrated using fully reconstructed B^{\pm} decays.

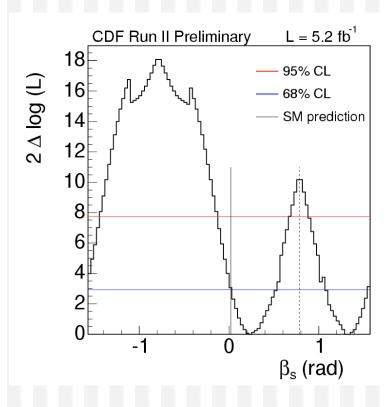
SSKT: "Same side kaon tagging" $\varepsilon D^2 \sim 3.2\%$ calibrated using B^0_s hadronic decays


Same-side Kaon tagging calibrated for the first time since 2006 using B⁰_s oscillations

The measured physical quantities are in agreement with previous measurements:


$$c\tau = 451.2 \pm 5.5 \text{ (stat.)} \ \mu\text{m}$$

 $\Delta m_s = 17.79 \pm 0.07 \text{ (stat.)}$

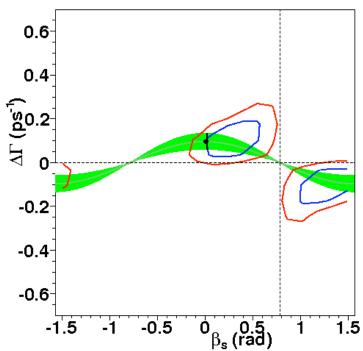


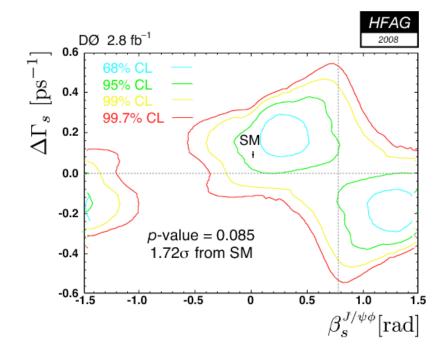
$$B_s^0 \to D_s^- \pi^+, \ D_s^- \to \phi^0 \pi^-, \ \phi^0 \to K^+ K^-$$

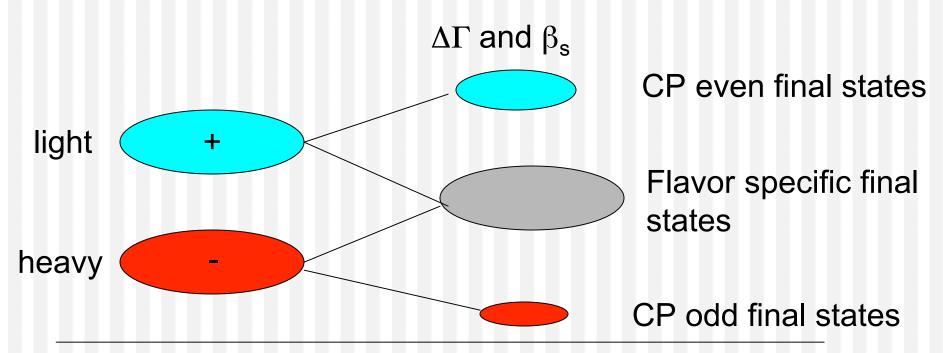
 $B_s^0 \to D_s^- \pi^+, \ D_s^- \to K^* K^-, \ K^* \to K^+ \pi^-$
 $B_s^0 \to D_s^- \pi^+, \ D_s^- \to (3\pi)^-$
 $B_s^0 \to D_s^- (3\pi)^+, \ D_s^- \to \phi^0 \pi^-, \ \phi^0 \to K^+ K^-$

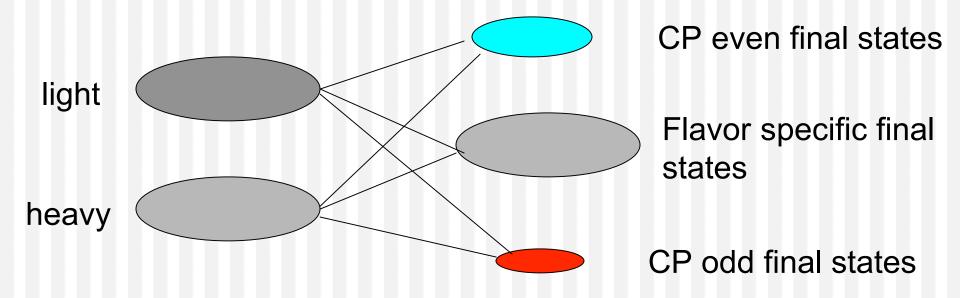
Results:

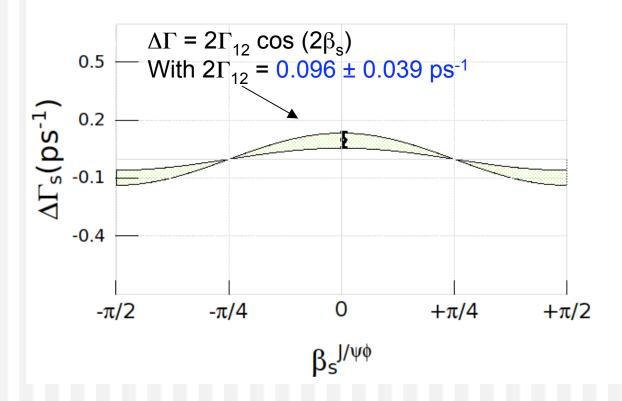
Comparing the green region with the contour tests the computation of Γ_{12} under the hypothesis of mixing induced CP violation independent of the value of β_s


Comparing the confidence intervals in β_s with the Standard Model value value of β_s =0.019 tests for new sources of CP violation: we are ~1 σ from the standard model=> no sign of new physics yet.

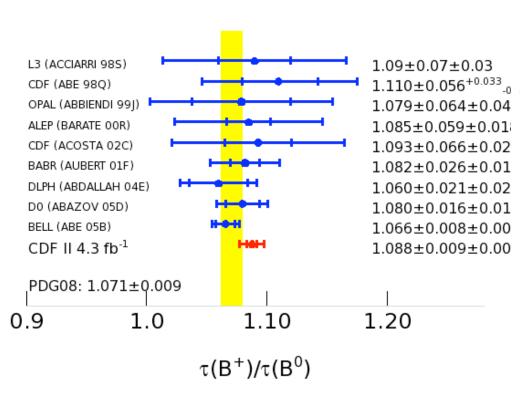

D0 are also in the game, but no update since 2.8 fb⁻¹



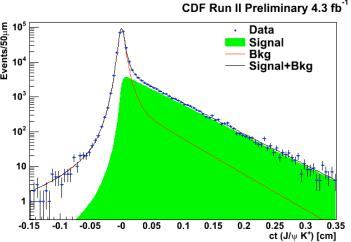




As we turn up Mixing-Induced CP violation ($\phi_{s,}$ -2 β_{s} in the SM) , the two mass eigenstates become equally mixed CP odd and even states:


Mixing induced CP violation with Γ_{12} from HQE implies contraint on $\Delta\Gamma$ & β_s

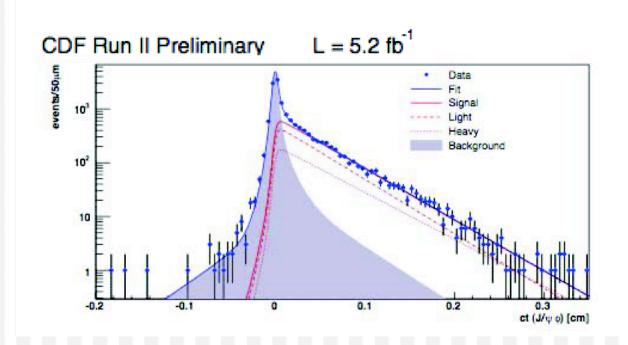
$$\beta_{\text{s}}^{\text{J/}\psi\phi}$$
 vs. $\Delta\Gamma_{\text{s}}$



Γ^{s}_{12} is an important quantity, it predicts band of values for $\Delta\Gamma$, β_{s} . The HQE used can be checked in lifetime ratios:

 $\tau(B^+)/\tau(B^0)$ measurements

Theory prediction 1.063 ± 0.027 for this ratio. Alexander Lenz arXiv:0802.0977

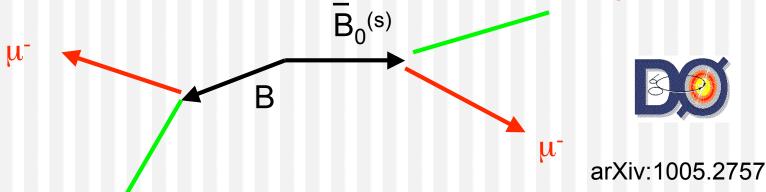


PDG world average and new CDF measurements in $B^+ \rightarrow J/\psi \ K^+, \ B^+ \rightarrow J/\psi \ K^0$

http://www-cdf.fnal.gov/physics/new/bottom/091217.blessed-JpsiX4.3/jpsix.html

in good agreement with HQE

The B 0 _s lifetime τ_s is another check of the HQE. The B 0 _s \rightarrow J/ ψ ϕ analysis also contains the world's best measurement of τ_s , predicted to be equal to the B 0 lifetime τ_0 to within 1%.



$$c\tau_s = 458.7 \pm 7.5 \text{ (stat)} \pm 3.6 \text{ (syst)} \mu\text{m}$$

 $\Delta\Gamma_s = 0.075 \pm 0.035 \text{ (stat)} \pm 0.01 \text{ (syst)} \text{ ps}^{-1}$

compare $c\tau_0$ = (459±2.7 μ m, PDG2008) compare theory $\Delta\Gamma_s$ =0.096 ± 0.039 ps⁻¹ Lenz & Nierste JHEP0706:072,2007

$$|A_{||}(0)|2 = 0.231 \pm 0.014 \text{ (stat)} \pm 0.015 \text{ (syst)}$$

 $|A_{0}(0)|2 = 0.524 \pm 0.013 \text{ (stat)} \pm 0.015 \text{ (syst)}.$
 $\phi_{\perp} = 2.95 \pm 0.64 \text{ (stat)} \pm 0.07 \text{ (syst)}.$

Measurement of the semileptonic CP Asymmetry A_{sl}^{b} in D0

Same sign muon pairs come from neutral B hadrons which oscillate into their antiparticles (e.g. B_s^0 , 50% of the time).

An excess of negative muons will occur if there is more b than \bar{b} in the shortlived $B^0_{s,L}$, i.e. if |q/p| > 1. This can happen at a low level, in the standard model.

$$a_{sl}^q = \frac{\Gamma(\bar{B}_q^0(t) \to \mu^+ X) - \Gamma(B_q^0(t) \to \mu^- X)}{\Gamma(\bar{B}_q^0(t) \to \mu^+ X) + \Gamma(B_q^0(t) \to \mu^- X)} = \frac{1 - |q/p|^4}{1 + |q/p|^4}$$

Both B⁰ and B⁰_s contribute, at the Tevatron; experimentally one measures

$$A_{sl}^{b} = (0.506\pm0.043) a_{sl}^{d} + (0.494\pm0.043) a_{sl}^{s}$$

= $(-2.3^{+0.5}_{-0.6}) \times 10^{-4}$ using inputs from Lenz & Nierste hep-ph/0612167

You will notice that this mechanism depends on the existence of a decay width difference:

$$a_{sl}^q = \frac{\Gamma_q^{12}}{M_q^{12}} \cdot \sin \phi_q = (49.7 \pm 9.4) \times 10^{-4} \sin \phi_q \quad \text{\tiny (hep-ph/0612167)}$$

$$\phi_s \approx -2\beta_s$$

Like-sign dimuon charge asymmetry

$$A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

N⁺⁺(N⁻⁻): number positive (negative) dimuon events. (Definition includes b-hadrons and backgrounds) Inclusive muon charge asymmetry

$$a = \frac{n^+ - n^-}{n^+ + n^-}$$

n⁺(n⁻): number positive (negative) inclusive muons (Definition includes b-hadrons and backgrounds)

These two quantities are measured, then related to Ab_{sl}

1.495 x 109 inclusive muons

$$a = (0.955 \pm 0.003)\%$$

$$a = k A^{b}_{sl} + a_{bkg}$$
$$A = KA^{b}_{sl} + A_{bkg}$$

3.371 x 106 dimuons

$$A = (0.564 \pm 0.053)\%$$

$$a_{bkg} = f_k a_k + f_\pi a_\pi + f_p a_p + (1 - f_{bkg}) \delta$$

$$A_{bkg} = F_k A_k + F_{\pi} A_{\pi} + F_{\rho} A_{\rho} + (2 - F_{bkg}) \Delta$$

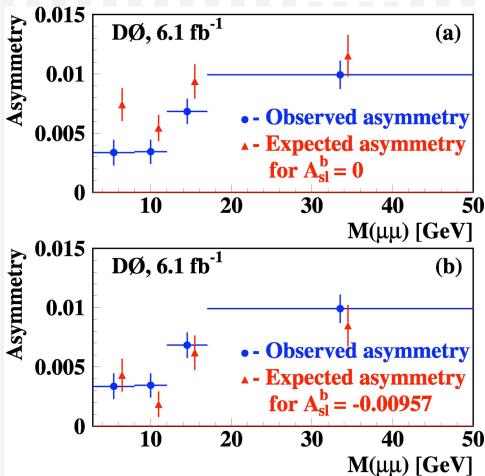
Kaon asymmetries a_k , A_k from data $(K^{*0} \rightarrow K^+\pi^- \text{ and } \phi \rightarrow K^+K)^-)$ Pion and proton asymmetries a_π , A_π , a_p , A_p from data $(K^0_s \rightarrow \pi^+\pi^- \text{ and } \Lambda^0 \rightarrow p\pi^-)$.. where charged tracks satisfy muon selection cuts.

Kaon fractions f_k , F_k from analysis of $K^{*0} \rightarrow K^+\pi^-$ and $K^{*+} \rightarrow K^0_s\pi^+$. Pion and proton fractions f_π , F_π , f_p , F_p from f_k , F_k with additional input from Monte Carlo on n_π/n_K and n_p/n_K

Muon reconstruction asymmetries δ and Δ from J/ $\psi \rightarrow \mu + \mu$ - events.

Dimuon charge asymmetry

 $A_{sl}^{b} = (-0.957 \pm 0.251(stat) \pm 0.146(syst))\%$



$$A^{b}_{sl}(SM) = (-0.023 + 0.005_{-0.006})\%$$

Discrepancy at the 3.2σ level.

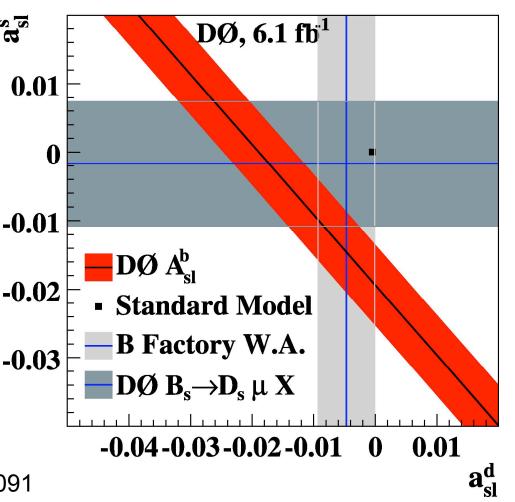
Compare CDF, 1.6 fb⁻¹: $A^{b}_{sl} = (0.80\pm0.90(\text{stat})\pm0.68(\text{syst}))\%$

D0 then goes on to Interpret the discrepancy As an anomalous value of

 a^{s}_{sl} from an anomalously high value of ϕ_{s} as we shall see

Extract as

as_{sl} is then extracted using additional input from the b-factories on ad_{sl}, and Tevatron measurements of fragmentation


measurements of fragmentation fractions:

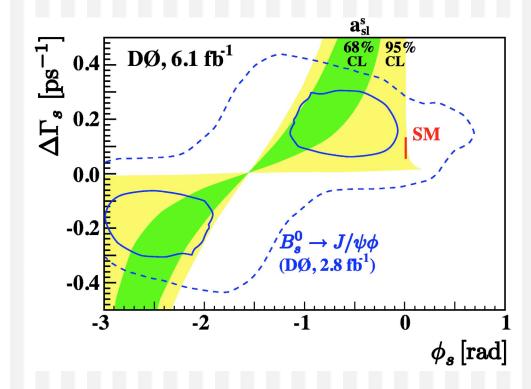
$$a_{sl}^s = (-1.46 \pm 0.75)\%$$

$$a_{sl}^{s}(SM) = (+0.0021\pm0.0006)\%$$

Result consistent with Independent D0 measurement Using partially reconstructed B_s decays: a_s = -0.0017±0.0091

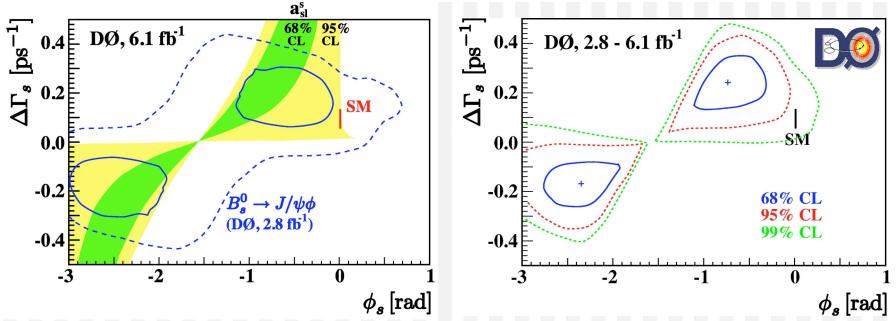
arXiv:0904.3907

Extract bounds on ϕ_s , $\Delta\Gamma$


Bounds on ϕ_s and $\Delta\Gamma$ are extracted with the assumption of mixing-induced CP violation:

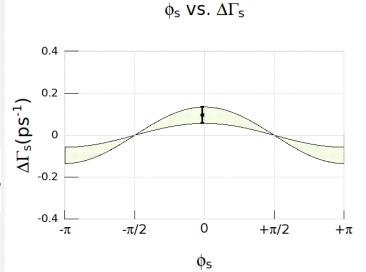
Take

$$a_{sl}^q = \frac{\Gamma_q^{12}}{M_q^{12}} \cdot \sin \phi_q$$


$$\Delta M_s = 2|M^{12}|$$

$$\Delta\Gamma_s = 2|\Gamma^{12}| \cdot \cos\phi_s$$

$$a_{sl}^s = \frac{\Delta \Gamma_q}{\Delta M_q} \cdot \tan \phi_s$$


(Reminder, this is the condition of Mixing induced CP violation!)

The D0 analysis of J/ ψ ϕ and the D0 muon asymetries are consistent and can be combined in the context of Mixing Induced CP Violation.

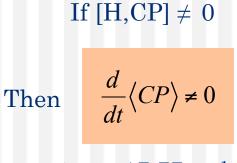
But then one can compare this with theoretical predictions of Γ_{12} , which also imply bounds in the same parameter space, and there is some tension because:

$$a_{sl}^q = rac{\Gamma_q^{12}}{M_q^{12}} \cdot \sin\phi_q = (49.7 \pm 9.4) imes 10^{-4} \sin\phi_q$$
 compare
$$a_{sl}^s = (-1.46 \pm 0.75)\%$$

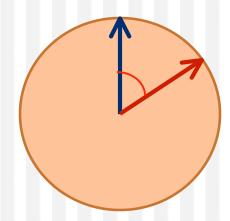
See Bauer & Dunn arXiV:1006.1629 for comments on new physics contributions to Γ_{12}

Conclusions

- CDF reports an updated measurement of the CP violating phase β_s , now more precise and consistent with the standard model at ~ 1σ level.
- D0 reports a 3.2 sigma anomaly in the semileptonic CP asymmetry A^b_{sl}.
- In the context of Mixing Induced CP violation:
 - The β_s measurements (CDF,D0) are consistent with hypothesis.
 - The D0 a_{sl}^{s} measurement is consistent with the β_{s} measurements
 - The a_{sl}^s measurements seems to center in an unphysical region, but maybe OK within errors for the highest values of β_s
 - A certain tension presently exists between the three sources of bounds on $β_s$ and ΔΓ.
 - LHCb inherits a situation that I personally find a little unclear.



Time dependence of the angular distributions: use a basis of linear polarization states of the two vector mesons $\{S, P, D\} \rightarrow \{P_{\perp}, P_{|\perp}, P_0\}$



CP odd states decay to P_{\perp}

CP even states decay to P_{11} , P_0

 $\Delta m_s \sim 17.77 \text{ ps}^{-1}$.

- •The polarization correlation depends on decay time.
- •Angular distribution of decay products of the J/ ψ and the ϕ analyze the rapidly oscillating correlation.

S. Dighe, I. Dunietz, H. J. Lipkin, and J. L. Rosner, Phys. Lett. B 369, 144 (1996),
 184 hep-ph/9511363.

reference material

$$\hat{n} = (\sin\theta\cos\varphi, \sin\theta\sin\varphi, \cos\theta) \qquad \text{be done with either a mix of B and \overline{B} mesons (untagged) or with a partially separated sample (flavor tagged). Latter is more difficult and more powerful.}$$

An analysis of the decay can be done with either a mix of B and \overline{B} mesons (untagged) or difficult and more powerful.

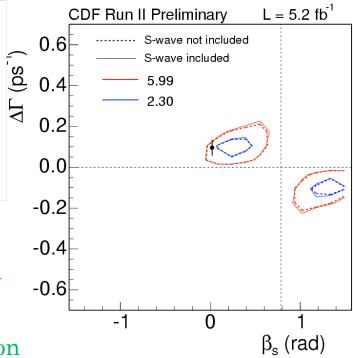
$$A_{i}(t) = \frac{a_{i}e^{-imt}e^{-\Gamma t/2}}{\sqrt{\tau_{H} + \tau_{L} \pm \cos 2\beta_{s} \cdot (\tau_{L} - \tau_{H})}} \left[E_{+}(t) \pm e^{2i\beta'} E_{-}(t) \right]$$

$$\overline{A}_{i}(t) = \frac{a_{i}e^{-imt}e^{-\Gamma t/2}}{\sqrt{\tau_{H} + \tau_{L} \pm \cos 2\beta_{s} \cdot (\tau_{L} - \tau_{H})}} \left[\pm E_{+}(t) + e^{-2i\beta_{s}}E_{-}(t)\right] \cdot$$

$$E_{\pm}(t) = \frac{1}{2} \left[e^{+(\frac{-\Delta\Gamma}{4} + i\frac{\Delta m}{2})t} \pm e^{-(\frac{-\Delta\Gamma}{4} + i\frac{\Delta m}{2})t} \right]$$

These expressions are:

- * used directly to generate simulated events.
- * expanded, smeared, and used in a Likelihood function.
- * summed over B and \overline{B} (untagged analysis only)

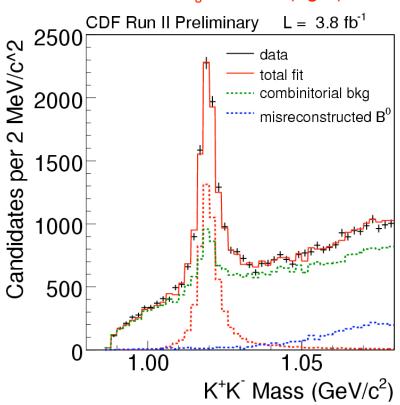

Modifications to the Likelihood for the S-wave contamiation

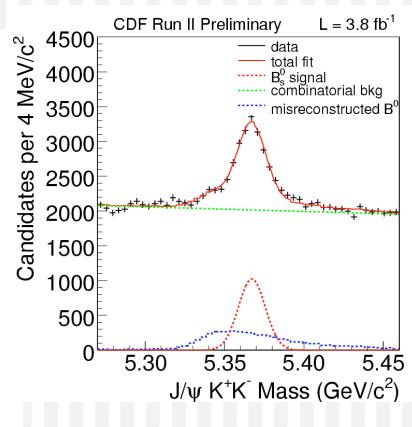
You also need this for the S-wave component:

$$\vec{B}(t) = (B(t), 0, 0)$$

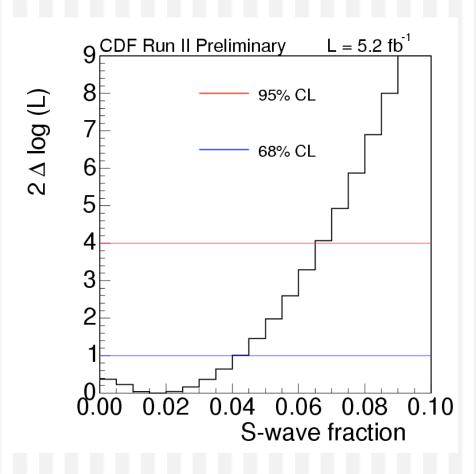
$$Q(\theta, \phi, \psi, t) = \frac{3}{16\pi} |\vec{B}(t) \times \hat{n}|^2$$

- S-wave is pure CP odd
- φ-mass dependence: nonrelativistic BW
- includes P-wave S-wave interference.
- and the proper detector re-normalization after the detector sculpting.


KK mass shape in the region of the φ


Invariant KK mass (left)

Combinatorial background from B⁰_s sidebands.


B⁰ reflections: shape from MC,

Fractions from B⁰_s mass fit (right)

Fitted S-wave fraction:

Source	A ^b _{sl} inclusive muon	$m{A^b}_{ m sl}$ dimuon	A ^b _{sl} combined
A or a (stat)	0.00066	0.00159	0.00179
f_K or F_K (stat)	0.00222	0.00123	0.00140
$P(\pi \to \mu)/P(K \to \mu)$	0.00234	0.00038	0.00010
$P(p \to \mu)/P(K \to \mu)$	0.00301	0.00044	0.00011
A_K	0.00410	0.00076	0.00061
A_{π}	0.00699	0.00086	0.00035
A_p	0.00478	0.00054	0.00001
δ or Δ	0.00405	0.00105	0.00077
$f_K \text{ or } F_K \text{ (syst)}$	0.02137	0.00300	0.00128
π, K, p multiplicity	0.00098	0.00025	0.00018
c_b or C_b	0.00080	0.00046	0.00068
Total statistical	0.01118	0.00266	0.00251
Total systematic	0.02140	0.00305	0.00146
10 Total	0.02415	0.00405	0.00290